
1 | P a g e

Test Automation Made Easy

USER MANUAL OF WEB IDE

Accelerate, Improve and Plan success with an economical

code

https://www.nimbal.io/

2 | P a g e

INDEX

Sr No. Content Description Page No.

1. INTRODUCTION 3

2. PRE-REQUISITE 3

3. CLONE REPOSITORY ON WEB IDE

4. CODES AND TEST CASES 3

5. RUN TEST CASES ON WEB IDE 3 -8

 • Run 1: Running Happy Path Scenario IDE Approach

 • Run 2: Running Negative Path Scenario IDE Approach

 • Run 3: Running the whole feature

6. RUNNING TESTS USING TAGS 8-13

7. REPORTS 13-17

 • Reviewing Reports

8. REFERENCES 17

3 | P a g e

INTRODUCTION

A web integrated development environment (Web IDE), also known as an Online IDE or Cloud IDE, is a

browser-based IDE. Web testing is software testing that focuses on web applications. Complete testing

of a web-based system before going live can help address issues before the system is revealed to the

public.

Issues may include the security of the web application, the basic functionality of the site, its

accessibility to handicapped users and fully able users, its ability to adapt to the multitude of desktops,

devices, and operating systems, as well as readiness for expected traffic and number of users and the

ability to survive a massive spike in user traffic, both of which are related to load testing.

PRE-REQUISITE

1. Knowledge of XPath

2. Basics of Testing concepts

3. Access to Nimbal Web IDE i.e., its URL, such as nimbal-webide.getskills.co.nz

4. Before cloning the repository on Web IDE, get ready with the following steps.

o Create Bitbucket account

o Clone Repository on Bitbucket

o Create an App password for your bitbucket account

5. Install 7-Zip

6. Your browser should have the following programs installed

a. Selector Hub : it is a helper browser extension, which gives us prebuilt XPath.

b. ChroPath: it is an alternative extension for XPath.

https://en.wikipedia.org/wiki/Software_testing
https://en.wikipedia.org/wiki/Web_application
https://www.w3schools.com/xml/xpath_intro.asp
https://www.geeksforgeeks.org/software-engineering-automated-testing/
https://nimbal-webide.getsills.co.nz/
https://chrome.google.com/webstore/detail/selectorshub-xpath-plugin/ndgimibanhlabgdgjcpbbndiehljcpfh
https://chrome.google.com/webstore/detail/chropath/ljngjbnaijcbncmcnjfhigebomdlkcjo

4 | P a g e

A. Clone the Repository on WEB IDE

Copy the URL cloned from Bitbucket. This URL is used to clone the project in Web IDE.

1. Go to the Web IDE link provided to you through an email and open it in web browser.

Figure 1: Open web IDE link on web browser

2. Click on Terminal, type below command to change directory from /home/project to /home.

$cd ..

5 | P a g e

Figure 2: home directory

3. Copy the clone command from bitbucket and enter in terminal as shown below (screenshot)

$ git clone https://bitbucket.org/nimbal/nimbal-client-auto.git.

https://bitbucket.org/nimbal/nimbal-client-auto.git

6 | P a g e

Figure 3: creating clone repository

4. Enter the App Password to clone the Repository in local. (Create an App password for your

bitbucket account).

Figure 4: App Password to clone repository

5. Run the command in the terminal to see the list where the project is created

$ ls

7 | P a g e

Figure 5: Listing the project

After following the above steps, a project is created.

6. Check if the dependencies being created under M2 Folder.

a. Navigate to your cloned folder by clicking on File >> Open Workspace, then choose the

project name which you have just cloned as shown below

8 | P a g e

Figure 6: Open Workspace

b. Go to M2 under root directory to see if Maven Dependencies are available.

Figure 7: Look for Maven dependencies

c. Select the path /home/client-auto/, run the Command shown below to this install the

dependencies related to Maven, Apache etc

$ mvn install

9 | P a g e

Figure 8: Running Command to install Dependencies

d. Notice new files are created under M2 folders which means dependencies has been

installed.

7. Install the Cucumber Plugin for steps Intellisense.

a. Open Web IDE Command Palette using Ctrl + Shift + P. You will see input box popup up as

shown below

Figure 9: Open Command Palette

b. Type “Plugin: Deploy” as shown below in screenshot
 

Figure 10: Search Plugin Deploy

10 | P a g e

c. Press Enter, and you will see input box as shown below in screenshot
 

Figure 11: Select Plugin ID

d. Enter below URL in input box and press enter again as shown below in screenshot. 

https://raw.githubusercontent.com/nkshschdv/vsix/master/alexkrechik.cucumberautoco
mplete-2.15.1%20(1).vsix

Figure 12: paste URL to deploy

e. You will see a plugin is installed in Plugin section as shown below in screenshot

           

https://raw.githubusercontent.com/nkshschdv/vsix/master/alexkrechik.cucumberautocomplete-2.15.1%20(1).vsix
https://raw.githubusercontent.com/nkshschdv/vsix/master/alexkrechik.cucumberautocomplete-2.15.1%20(1).vsix
https://raw.githubusercontent.com/nkshschdv/vsix/master/alexkrechik.cucumberautocomplete-2.15.1%20(1).vsix
https://raw.githubusercontent.com/nkshschdv/vsix/master/alexkrechik.cucumberautocomplete-2.15.1%20(1).vsix

11 | P a g e

Figure 13: Cucumber Plugin Installed

8. Check if the auto-platform.jar file is available. (If not, please contact Nimbal team). Follow the

steps to install the auto-platform.jar with version.

a. Go to pom.xml >> copy the version.

Figure 14: Copy the auto-platform version 1.9.4

b. Run the command

$ mvn install:install-file -Dfile=mvn install:install-file -

Dfile='/home/project/src/test/resources/1.9.3/auto-platform-1.9.3-tests.jar' -

DgroupId='nz.co.nimbal' -DartifactId='auto-platform' -Dversion='1.9.3' -

Dpackaging='test-jar'

Note: You can also find this command in Readme

c. Run the command to delete the Target folder created from running mvn install for

changing the version for auto-platform jar file as shown above.

$ mvn clear

12 | P a g e

Figure 15: Delete Target Folder

B. CODES AND TEST CASES

In WEB IDE testing, user create/update 4 major files to automate testing. The files are mentioned

below:

1. config.dev.properties

2. .feature File.

3. locators.json

4. TestRunner.java

1. config.dev.properties : .properties file is used to store the configurable parameters of an

application. Config file defines the parameters, options, settings and preferences applied to

operating systems (OSes), infrastructure devices and applications used to run the test.

Located at /home/project/src/test/resources/env/config.dev.properties. Add the following

values as shown below in Figure 4

a. app.gmail = gmail.com

instead of gmail, you can replace it with any constant value of your concern. For

 example, app.website = www.website.com

b. web.browser=chromeheadless

http://www.website.com/

13 | P a g e

Specified which browser to the user for running the test. other values possible are firefox

Figure 16: config.dev.properties

2. locators.json

Located at /home/project/src/test/resources/locators.json . This file is used to add XPath key pair

values, while key will be user understandable keyword and value will be an XPath, which is used to

locate an HTML element within a webpage. For example, XPath for inputting email id in gmail.com

page will be //input[@id='identifierId'] as shown below in Figure

Figure 17: illustrates how to choose the XPath through Selectors Hub

Therefore, the locators.json file will look something like the below after making changes

14 | P a g e

Figure 18: locator.json file after adding XPath for Gmail input location from Gmail.com

3. .feature File

New feature file is created to test the steps in scenarios. Follow the steps below to create a new

file.

a. Click on the file’s icon.

b. Navigate to src > java > feature.

c. A dialog box will appear and will ask for the name of the new file enter any name for

example, login.feature extension

Figure 19: Path to the file

d. login. feature for login related feature test scenarios as shown in the below screenshot

15 | P a g e

Figure 20: feature file with test Cases for login

4. TestRunner.java:

TestRunner.java file is located at /home/project/src/test/java/TestRunner.java. This file indicates

which tests need to be run using tags. A tag can be placed on a scenario/test or a feature in a

.feature file. It usually starts “@” keyword.

For example,

a. Figure 6 depicts the functioning of the TestRunner.java file and the tag provided in the

tags section written at line number 14 as

 tags={“@gmailLoginNegativePath”}

 Later we will replace this tag to run the tests we want to execute.

b. If tags are empty then the TestRunner.java file will run all the feature files present in the

project as shown below

tags={“”}

16 | P a g e

Figure 21: TestRunner.java file

C. Run Test Case in WEB IDE

Follow the steps involved in running the test cases:

In the terminal, enter mvn install command and it will show the results in the

terminal.

Figure 22: TestRunner.java

17 | P a g e

Run 1: Running Happy Path Scenario

Following is the code is written for the Happy path as shown in code snippet 1. Happy path test is a

well-defined test case using known input, which executes without exception and produces an expected

output.

Feature: Login in the app

@gmailLoginHappyPath

Scenario: Login in the Gmail- Happy path

Given I open gmail.com

And I fill input email_inp with abcd123

And I fill input password_inp with 123@abcd

And I click element login_btn

And I can see the text "Compose"

Code Snippet 1: Happy Path for Gmail Login

Figure 23: Reference image in Web IDE Happy Path

18 | P a g e

Explanation of the Code

1. Title of the Feature, always start with Feature Keyword

2. The keyword of the whole case (No need to write the complete code for testing just enter the keyword)

3. Description of the code

4. The user opens the URL gmail.com

5. Then users enter the data as abcd123 in the email field (fill input is a keyword for giving input)

6. Then users enter the data as 123@abcd in the password field (fill input is a keyword for giving input)

7. Then by clicking the login_btn (Button named Login)

8. User login successful can view the compose button

Run 2: Running Negative Path Scenario

Following is the code is written for the Negative path as shown in code snippet 2. Negative testing

ensures that your application can gracefully handle invalid input or unexpected user behaviour.

@gmailLoginFeature

Feature: Login in the app

@gmailLoginNegativePath

Scenario: Login in the Gmail- Negative path

Given I open gmail.com

And I fill input email_inp with abcd123

And I fill input password_inp with 123@abcd

And I click element login_btn

And I check the message "Wrong password. Try again or click ‘Forgot password’ to

 reset it."

Code Snippet 2: Negative Path for Gmail Login

19 | P a g e

Figure 24: Reference image in Web IDE for Negative path

Explanation of the Code

1. The keyword of the whole case (No need to write the complete code for testing just enter the keyword)

2. Title

3. The keyword of case 2(No need to write the complete code for testing just enter the keyword)

4. Description of the code

5. The user opens the URL gmail.com

6. Then users enter the data as abcd123 in the email field (fill input is a keyword for giving input)

7. Then users enter the data as 123@abcd in the password field (fill input is a keyword for giving input)

8. Then by clicking the login_btn (Button named Login) User login successful, can view the message "Wrong

password. Try again or click ‘Forgot password’ to reset it."

Run 3: Running the whole feature

Following is the complete code for our feature. Which can be executed by the adding tag

@gmailLoginFeature in the TestRunner.java file.

20 | P a g e

@gmailLoginFeature

Feature: Login in the app

@gmailLoginHappyPath

Scenario: Login in the Gmail- Happy path

Given I open gmail.com

And I fill input email_inp with abcd123

And I fill the input password with 123@abcd

And I click element login_btn

And I can see the text "Compose"

@gmailLoginNegativePath

Scenario: Login in the Gmail- Negative path

Given I open gmail.com

And I fill input email_inp with abcd123

And I fill input password_inp with 123@abcd

And I click element login_btn

And I check the message "Wrong password. Try again or click ‘Forgot password’ to

 reset it."

Code Snippet 3: complete feature file code

21 | P a g e

Figure 25: Reference image in Web IDE for complete code

D. RUNNING TEST USING TAGS

There are two components to understand how to run tests (features/scenarios) by tags

1. Tags:

Various tags are used in feature files. We can identify a tag as a group of features or a group of

scenarios or a group of both features and tags. Depending on a tester.

For example, in login.feature file above files we have used the following tags

• @gmailLoginFeature – To execute complete feature

• @gmailLoginHappyPath – To execute the happy path scenario

• @gmailLoginNegativePath – To execute the negative path scenario

2. TestRunner.java file:

It is used for running the test with the help of tags. Every feature and scenario have a tag

associated with it. We will insert this tag in the TestRunner.java file and run the program to get

the desired outcome of the test using reports.

22 | P a g e

Following is the way to utilize the TestRunner.java file to run the tests.

1. Click on the file’s icon. Navigate to src > java > TestRunner.java

Figure 26: Add the tag

2. In any pre-created tag can be used for the test by taking any Tag from an existing code then

writing it in the place of “@AddYourTagHere”

For example tags = {“@gmailLoginFeature”}

Here the tag @gmailLoginFeature is used.

23 | P a g e

Figure 27: Enter the tag to run the test case

3. Run the command to execute the test case with the specific scenario with tag.

4. Target Folder gets generated where reports are created with passed or failed status.

E. REPORTS

The report is generated each time when the user runs a tag using the maven command or by

running right click on the TestRunner.java file.

1. The report generated can be seen under the targets folder that is located at

/home/project/target.

24 | P a g e

2. The json reports are found at /home/project/target/json-cucumber-reports.

Figure 28: Generated Report -JSON

3. The generated HTML report is found at /home/project/target/generated-report.

4. If any test fails the auto-generated report then render’s clarity where it is failing, one can see

the captured screenshots at /home/project/target/generated-report/attachments

25 | P a g e

Figure 29: Screenshots in auto-generated report

 It shows the page that we are getting on login.

Reviewing Report

To review the reports please follow the following steps:

1. Right-click on target/generated-report as shown below

26 | P a g e

Figure30: Download Auto-generated report

2. Open generated report.tar and Save file and then Click on ok button

27 | P a g e

Figure31: Auto-generated report

3. A file will be downloaded as shown below

Figure32: Downloaded auto-generated report

4. Extract this file in your folder as shown below

28 | P a g e

Figure33: Extract to auto-generated report

5. After the extraction, a folder name generated-report will appear in the same directory as

shown below,

Figure 34: Downloaded file

6. Inside this folder open the index file in the browser to see the report.

Figure 35: Screenshots in auto-generated report

29 | P a g e

7. Here is example of the report shown below

Figure 36: Scenario Report

REFERENCES

www.javatpoint.com

www.w3schools.com

www.geeksforgeeks.com

http://www.javatpoint.com/
http://www.javatpoint.com/
http://www.javatpoint.com/
http://www.w3schools.com/
http://www.w3schools.com/
http://www.w3schools.com/
http://www.geeksforgeeks.com/
http://www.geeksforgeeks.com/
http://www.geeksforgeeks.com/

